## Diophantine equations and when to quit trying to solve them

Rachel Newton

King's College London

April 2023

Rachel Newton

## Diophantine equations

Mathematicians working on Diophantine equations study the integer solutions to polynomial equations with integer coefficients.



E.g. the Pythagorean equation  $a^2 + b^2 = c^2$  has the integer solution a = 3, b = 4, c = 5.



## Plimpton 322 (c. 1800 BC)



$$119^{2} + 120^{2} = 169^{2}$$
  

$$3367^{2} + 3456^{2} = 4825^{2}$$
  

$$4601^{2} + 4800^{2} = 6649^{2}$$
  

$$12709^{2} + 13500^{2} = 18541^{2}$$

Let  $f(x_1, \ldots, x_n) \in \mathbb{Q}[x_1, \ldots, x_n].$ 

Let  $X/\mathbb{Q}$  be the variety defined by  $f(x_1, \ldots, x_n) = 0$ .

The set of **rational points** on X is

$$X(\mathbb{Q}) = \{(x_1,\ldots,x_n) \in \mathbb{Q}^n \mid f(x_1,\ldots,x_n) = 0\}.$$

E.g. (0,1) is a rational point on the unit circle  $x^2 + y^2 - 1 = 0$ .

### Searching for rational points

drwxrwxrwt, 4 root root 4896 Sep 12 23:58 tmp drwxr-xr-x, 2 root root 4096 May 18 16:03 yp 

Let  $X/\mathbb{Q}$  be an algebraic variety.

$$X(\mathbb{Q}) \subset X(\mathbb{R})$$

SO

$$X(\mathbb{R}) = \emptyset \Longrightarrow X(\mathbb{Q}) = \emptyset.$$

 $X(\mathbb{R})$  is easier to deal with than  $X(\mathbb{Q})$  because  $\mathbb{R}$  is complete.

## The real world is not enough

But

$$X(\mathbb{R}) \neq \emptyset \implies X(\mathbb{Q}) \neq \emptyset.$$

E.g.  $x^2 = 2$  has real solutions but no rational solutions.

## The real world is not enough

But

$$X(\mathbb{R}) \neq \emptyset \implies X(\mathbb{Q}) \neq \emptyset.$$

E.g.  $x^2 = 2$  has real solutions but no rational solutions.

 $\mathbb R$  is not the only completion of  $\mathbb Q.$ 

But

$$X(\mathbb{R}) \neq \emptyset \implies X(\mathbb{Q}) \neq \emptyset.$$

E.g.  $x^2 = 2$  has real solutions but no rational solutions.

### $\mathbb R$ is not the only completion of $\mathbb Q.$

 $\mathbb{R} = \frac{\{\text{Cauchy sequences in } \mathbb{Q} \text{ with respect to } |\cdot|\}}{\{\text{sequences in } \mathbb{Q} \text{ converging to } 0 \text{ with respect to } |\cdot|\}}$ i.e.  $\mathbb{R}$  is the completion of  $\mathbb{Q}$  with respect to  $|\cdot|$ . But

$$X(\mathbb{R}) \neq \emptyset \implies X(\mathbb{Q}) \neq \emptyset.$$

E.g.  $x^2 = 2$  has real solutions but no rational solutions.

### $\mathbb R$ is not the only completion of $\mathbb Q.$

 $\mathbb{R} = \frac{\{\text{Cauchy sequences in } \mathbb{Q} \text{ with respect to } |\cdot|\}}{\{\text{sequences in } \mathbb{Q} \text{ converging to 0 with respect to } |\cdot|\}}$ i.e.  $\mathbb{R}$  is the completion of  $\mathbb{Q}$  with respect to  $|\cdot|$ . E.g.  $\pi$  can be represented by the Cauchy sequence

 $3, 3.1, 3.14, 3.141, 3.1415, 3.14159, \ldots$ 

or by

 $3 + 1, 3.1 + 1/2, 3.14 + 1/3, 3.141 + 1/4, 3.1415 + 1/5, 3.14159 + 1/6, \dots$ 

Let p be a prime. Define the p-adic absolute value  $|\cdot|_p$  on  $\mathbb{Q}$  by

$$\left. p^r \frac{a}{b} \right|_p = p^{-r}$$

where  $r, a, b \in \mathbb{Z}$  and  $p \nmid a, b$ . We also set  $|0|_p = 0$ .

Let p be a prime. Define the p-adic absolute value  $|\cdot|_p$  on  $\mathbb{Q}$  by

$$\left. p^r \frac{a}{b} \right|_p = p^{-r}$$

where  $r, a, b \in \mathbb{Z}$  and  $p \nmid a, b$ . We also set  $|0|_p = 0$ .

E.g.  $5, 5^2, 5^3, 5^4, \dots \rightarrow 0$  with respect to  $|\cdot|_5.$ 

Let p be a prime. Define the p-adic absolute value  $|\cdot|_p$  on  $\mathbb{Q}$  by

$$\left. p^r \frac{a}{b} \right|_p = p^{-r}$$

where  $r, a, b \in \mathbb{Z}$  and  $p \nmid a, b$ . We also set  $|0|_p = 0$ .

E.g.  $5, 5^2, 5^3, 5^4, \dots \rightarrow 0$  with respect to  $|\cdot|_5$ . 1,11,111,1111,1111, \dots \rightarrow -1/9 with respect to  $|\cdot|_5$ .  $\mathbb{Q}_{p} = \frac{\{\text{Cauchy sequences in } \mathbb{Q} \text{ with respect to } |\cdot|_{p}\}}{\{\text{sequences in } \mathbb{Q} \text{ converging to } 0 \text{ with respect to } |\cdot|_{p}\}}$ i.e.  $\mathbb{Q}_{p}$  is the completion of  $\mathbb{Q}$  with respect to  $|\cdot|_{p}$ .  $\mathbb{Q}_{p} = \frac{\{\text{Cauchy sequences in } \mathbb{Q} \text{ with respect to } |\cdot|_{p}\}}{\{\text{sequences in } \mathbb{Q} \text{ converging to } 0 \text{ with respect to } |\cdot|_{p}\}}$ i.e.  $\mathbb{Q}_{p}$  is the completion of  $\mathbb{Q}$  with respect to  $|\cdot|_{p}$ .

Concretely, elements of  $\mathbb{Q}_p$  look like

$$\sum_{n=N}^{\infty} a_n p^n, \quad a_n \in \{0, 1, \dots, p-1\}, \ N \in \mathbb{Z}.$$

$$X(\mathbb{Q}) \subset X(\mathbb{R}) imes \prod_{p} X(\mathbb{Q}_{p}) = X(\mathbb{A}_{\mathbb{Q}})$$
  
 $Q \mapsto (Q, Q, Q, Q, Q, \dots).$ 

$$X(\mathbb{Q}) \subset X(\mathbb{R}) imes \prod_p X(\mathbb{Q}_p) = X(\mathbb{A}_{\mathbb{Q}})$$
  
 $Q \mapsto (Q, Q, Q, Q, Q, \dots).$ 

$$X(\mathbb{Q}) 
eq \emptyset \Longrightarrow X(\mathbb{A}_{\mathbb{Q}}) 
eq \emptyset$$

$$X(\mathbb{Q}) \subset X(\mathbb{R}) imes \prod_p X(\mathbb{Q}_p) = X(\mathbb{A}_{\mathbb{Q}})$$
  
 $Q \mapsto (Q, Q, Q, Q, Q, \dots).$ 

$$X(\mathbb{Q}) \neq \emptyset \Longrightarrow X(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset$$

### Definition

If " $\Leftarrow$ " holds, we say the **Hasse principle** holds.

#### Theorem (Hasse-Minkowski)

The Hasse principle holds for quadratic forms. I.e. a quadratic form over  $\mathbb{Q}$  has a non-trivial zero over  $\mathbb{Q}$  iff it has non-trivial zeros over  $\mathbb{R}$  and over  $\mathbb{Q}_p$  for all primes p.

### Example (Lind, Reichardt)

The curve

$$C: 2y^2 = x^4 - 17z^4$$

has points over  $\mathbb{R}$  and over  $\mathbb{Q}_p$  for all p but no points over  $\mathbb{Q}$ .

### Example (Lind, Reichardt)

The curve

$$C: 2y^2 = x^4 - 17z^4$$

has points over  $\mathbb{R}$  and over  $\mathbb{Q}_p$  for all p but no points over  $\mathbb{Q}$ .

How do we prove that  $C(\mathbb{Q}) = \emptyset$ ?

### Example (Lind, Reichardt)

The curve

$$C: 2y^2 = x^4 - 17z^4$$

has points over  $\mathbb{R}$  and over  $\mathbb{Q}_p$  for all p but no points over  $\mathbb{Q}$ .

How do we prove that  $C(\mathbb{Q}) = \emptyset$ ?

We need a tool that combines information at different primes.

Let  $a, b \in \mathbb{Q}_p \setminus \{0\}$ . Define the Hilbert symbol  $(a, b)_p$  as follows:

$$(a,b)_{p} = \begin{cases} 1/2 & \text{if } as^{2} + bt^{2} = u^{2} \text{ has no nontrivial solution over } \mathbb{Q}_{p}; \\ 0 & \text{otherwise.} \end{cases}$$

Let  $a, b \in \mathbb{Q}_p \setminus \{0\}$ . Define the Hilbert symbol  $(a, b)_p$  as follows:

$$(a,b)_{p} = \begin{cases} 1/2 & \text{if } as^{2} + bt^{2} = u^{2} \text{ has no nontrivial solution over } \mathbb{Q}_{p}; \\ 0 & \text{otherwise.} \end{cases}$$

Similarly, for  $a,b\in\mathbb{R}\setminus\{0\}$ , write

 $(a,b)_{\infty} = \begin{cases} 1/2 & \text{if } as^2 + bt^2 = u^2 \text{ has no nontrivial solution over } \mathbb{R}; \\ 0 & \text{otherwise.} \end{cases}$ 

### Theorem (equivalent to quadratic reciprocity)

Let  $a, b \in \mathbb{Q} \setminus \{0\}$ . Then

$$\sum_{p\leq\infty}(a,b)_p\in\mathbb{Z}.$$

Recall the curve

$$C: 2y^2 = x^4 - 17z^4.$$

The symbol (y, 17) can be evaluated at a  $\mathbb{Q}_p$ -point or an  $\mathbb{R}$ -point of C to give a Hilbert symbol.

Recall the curve

$$C: 2y^2 = x^4 - 17z^4.$$

The symbol (y, 17) can be evaluated at a  $\mathbb{Q}_p$ -point or an  $\mathbb{R}$ -point of C to give a Hilbert symbol.

E.g. let  $Q = (\sqrt{2}, \sqrt{2}, 0) \in C(\mathbb{R})$ . Then $(y, 17)(Q) = (y_Q, 17)_\infty = (\sqrt{2}, 17)_\infty.$ 

Recall the curve

$$C: 2y^2 = x^4 - 17z^4.$$

The symbol (y, 17) can be evaluated at a  $\mathbb{Q}_p$ -point or an  $\mathbb{R}$ -point of C to give a Hilbert symbol.

E.g. let 
$$Q = (\sqrt{2}, \sqrt{2}, 0) \in C(\mathbb{R})$$
. Then $(y, 17)(Q) = (y_Q, 17)_\infty = (\sqrt{2}, 17)_\infty.$ 

Note that

$$\sqrt{2}s^2 + 17t^2 = u^2$$

has the solution  $(0, 1, \sqrt{17})$  over  $\mathbb{R}$ . Therefore,  $(\sqrt{2}, 17)_{\infty} = 0$ .

### Returning to Lind and Reichardt's counterexample

One can show that for any  $Q \in C(\mathbb{Q})$ , we have

$$(y_Q, 17)_{\infty} = 0$$
 and  $(y_Q, 17)_p = 0$  for all  $p \neq 17$ .

One can show that for any  $Q \in C(\mathbb{Q})$ , we have

 $(y_Q, 17)_{\infty} = 0$  and  $(y_Q, 17)_p = 0$  for all  $p \neq 17$ .

E.g.  $\sqrt{17} \in \mathbb{Q}_{13}$  so

$$y_Q s^2 + 17t^2 = u^2$$

has the solution  $(0, 1, \sqrt{17})$  over  $\mathbb{Q}_{13}$ . Hence,  $(y_Q, 17)_{13} = 0$ .

One can show that for any  $Q\in C(\mathbb{Q})$ , we have

$$(y_Q, 17)_{\infty} = 0$$
 and  $(y_Q, 17)_p = 0$  for all  $p \neq 17$ .

E.g.  $\sqrt{17} \in \mathbb{Q}_{13}$  so

$$y_Q s^2 + 17t^2 = u^2$$

has the solution  $(0, 1, \sqrt{17})$  over  $\mathbb{Q}_{13}$ . Hence,  $(y_Q, 17)_{13} = 0$ .

On the other hand, we will show that  $(y_Q, 17)_{17} = 1/2$ . This gives

$$\sum_{\boldsymbol{p}\leq\infty}(y_Q,17)_{\boldsymbol{p}}=1/2\notin\mathbb{Z},$$

contradicting the reciprocity theorem. This implies that  $C(\mathbb{Q}) = \emptyset$ .

Let  $Q = (x_Q, y_Q, z_Q) \in C(\mathbb{Q})$ . So

$$2y_Q^2 = x_Q^4 - 17z_Q^4. (1)$$

Rescaling, we can assume that  $x_Q, y_Q, z_Q \in \mathbb{Z}$ .

Let  $Q = (x_Q, y_Q, z_Q) \in C(\mathbb{Q}).$  So

$$2y_Q^2 = x_Q^4 - 17z_Q^4. (1)$$

Rescaling, we can assume that  $x_Q, y_Q, z_Q \in \mathbb{Z}$ .

Suppose for contradiction that

$$y_Q s^2 + 17t^2 = u^2$$

has a nontrivial solution over  $\mathbb{Q}_{17}$ . Then  $y_Q \equiv (u/s)^2 \pmod{17}$ .

Let  $Q = (x_Q, y_Q, z_Q) \in C(\mathbb{Q}).$  So

$$2y_Q^2 = x_Q^4 - 17z_Q^4. (1)$$

Rescaling, we can assume that  $x_Q, y_Q, z_Q \in \mathbb{Z}$ .

Suppose for contradiction that

$$y_Q s^2 + 17t^2 = u^2$$

has a nontrivial solution over  $\mathbb{Q}_{17}$ . Then  $y_Q \equiv (u/s)^2 \pmod{17}$ . Plugging this into (1) modulo 17 gives

$$2(u/s)^4 \equiv x_Q^4 \pmod{17}.$$

Let  $Q = (x_Q, y_Q, z_Q) \in C(\mathbb{Q}).$  So

$$2y_Q^2 = x_Q^4 - 17z_Q^4. (1)$$

Rescaling, we can assume that  $x_Q, y_Q, z_Q \in \mathbb{Z}$ .

Suppose for contradiction that

$$y_Q s^2 + 17t^2 = u^2$$

has a nontrivial solution over  $\mathbb{Q}_{17}$ . Then  $y_Q \equiv (u/s)^2 \pmod{17}$ . Plugging this into (1) modulo 17 gives

$$2(u/s)^4 \equiv x_Q^4 \pmod{17}.$$

Hence 2 is a 4th power modulo 17. This is a contradiction because the only 4th powers modulo 17 are  $0, \pm 1, \pm 4$ . So  $(y_Q, 17)_{17} = 1/2$ .

## The Brauer group

The symbol (y, 17) is an element in the Brauer group of C, written Br C. The 2-torsion part of the Brauer group is made up of elements like this.

## The Brauer group

The symbol (y, 17) is an element in the Brauer group of C, written Br C. The 2-torsion part of the Brauer group is made up of elements like this.

Let X be a nice variety and let  $A \in Br X$ . For all  $p \leq \infty$ , we have evaluation maps

$$egin{aligned} X(\mathbb{Q}_p) imes ext{Br} \, X o \mathbb{Q}/\mathbb{Z} \ (\mathcal{Q}_p, \mathcal{A}) \mapsto \mathcal{A}(\mathcal{Q}_p). \end{aligned}$$

## The Brauer group

The symbol (y, 17) is an element in the Brauer group of C, written Br C. The 2-torsion part of the Brauer group is made up of elements like this.

Let X be a nice variety and let  $A \in Br X$ . For all  $p \leq \infty$ , we have evaluation maps

$$X(\mathbb{Q}_p) imes ext{Br}\,X o \mathbb{Q}/\mathbb{Z}\ (Q_p,\mathcal{A})\mapsto \mathcal{A}(Q_p).$$

Recalling that  $X(\mathbb{A}_{\mathbb{Q}}) = \prod_{p \leq \infty} X(\mathbb{Q}_p)$ , we obtain a pairing

$$X(\mathbb{A}_{\mathbb{Q}}) imes \operatorname{\mathsf{Br}} X o \mathbb{Q}/\mathbb{Z} \ ((Q_p)_{p\leq\infty},\mathcal{A})\mapsto \sum_{p\leq\infty}\mathcal{A}(Q_p).$$

#### Key observation (Manin, 1970):

$$X(\mathbb{Q}) \subset \Big\{ (Q_p)_{p \leq \infty} \in X(\mathbb{A}_{\mathbb{Q}}) \mid orall \mathcal{A} \in \operatorname{Br} X, \ \sum_{p \leq \infty} \mathcal{A}(Q_p) = 0 \in \mathbb{Q}/\mathbb{Z} \Big\}.$$

The set on the right-hand side is the Brauer–Manin set, denoted  $X(\mathbb{A}_{\mathbb{Q}})^{Br}$ .

#### Key observation (Manin, 1970):

$$X(\mathbb{Q}) \subset \Big\{ (Q_p)_{p \leq \infty} \in X(\mathbb{A}_{\mathbb{Q}}) \mid orall \mathcal{A} \in \operatorname{Br} X, \ \sum_{p \leq \infty} \mathcal{A}(Q_p) = 0 \in \mathbb{Q}/\mathbb{Z} \Big\}.$$

The set on the right-hand side is the Brauer–Manin set, denoted  $X(\mathbb{A}_{\mathbb{Q}})^{Br}$ .

• Suppose 
$$X(\mathbb{A}_{\mathbb{Q}}) \neq \emptyset$$
 but  $X(\mathbb{A}_{\mathbb{Q}})^{\mathsf{Br}} = \emptyset$ . Then  $X(\mathbb{Q}) = \emptyset$ .

#### Key observation (Manin, 1970):

$$X(\mathbb{Q}) \subset \Big\{ (Q_p)_{p \leq \infty} \in X(\mathbb{A}_{\mathbb{Q}}) \mid orall \mathcal{A} \in \operatorname{Br} X, \ \sum_{p \leq \infty} \mathcal{A}(Q_p) = 0 \in \mathbb{Q}/\mathbb{Z} \Big\}.$$

The set on the right-hand side is the Brauer–Manin set, denoted  $X(\mathbb{A}_{\mathbb{Q}})^{Br}$ .

Suppose X(A<sub>Q</sub>) ≠ Ø but X(A<sub>Q</sub>)<sup>Br</sup> = Ø. Then X(Q) = Ø.
 Brauer–Manin obstruction to the Hasse principle

To compute  $X(\mathbb{A}_{\mathbb{Q}})^{B^{r}}$ , for each  $\mathcal{A} \in Br X$  we need to understand how  $\mathcal{A}(Q_{p})$  varies as  $Q_{p}$  varies in  $X(\mathbb{Q}_{p})$ .

To compute  $X(\mathbb{A}_{\mathbb{Q}})^{\mathsf{Br}}$ , for each  $\mathcal{A} \in \mathsf{Br} X$  we need to understand how  $\mathcal{A}(Q_p)$  varies as  $Q_p$  varies in  $X(\mathbb{Q}_p)$ .

For example, if  $\mathcal{A}$  has order *n* then  $\mathcal{A}(Q_p) \in \frac{1}{n}\mathbb{Z}/\mathbb{Z} \subset \mathbb{Q}/\mathbb{Z}$ .

To compute  $X(\mathbb{A}_{\mathbb{Q}})^{B^{r}}$ , for each  $\mathcal{A} \in Br X$  we need to understand how  $\mathcal{A}(Q_{p})$  varies as  $Q_{p}$  varies in  $X(\mathbb{Q}_{p})$ .

For example, if  $\mathcal{A}$  has order *n* then  $\mathcal{A}(Q_p) \in \frac{1}{n}\mathbb{Z}/\mathbb{Z} \subset \mathbb{Q}/\mathbb{Z}$ .

If for some *p* all values in  $\frac{1}{n}\mathbb{Z}/\mathbb{Z}$  are attained then  $X(\mathbb{A}_{\mathbb{Q}})^{\mathcal{A}} \neq \emptyset$ , i.e.  $\mathcal{A}$  does not obstruct the Hasse principle.

Let  $Q_p \in X(\mathbb{Q}_p)$ .

• If  $\mathcal{A}$  has order coprime to p then  $\mathcal{A}(Q_p)$  only depends on  $Q_p \mod p$ .

Let  $Q_p \in X(\mathbb{Q}_p)$ .

- If  $\mathcal{A}$  has order coprime to p then  $\mathcal{A}(Q_p)$  only depends on  $Q_p \mod p$ .
- If  $\mathcal{A}$  has order p then  $\mathcal{A}(Q_p)$  could depend on  $Q_p \mod p^2$  or  $\mod p^3$  etc.

## Wild evaluation maps



Bright-N., 2020

For  $\mathcal{A} \in \operatorname{Br} X$  of order p, we:

- calculate *m* such that A(Q<sub>p</sub>) only depends on Q<sub>p</sub> mod p<sup>m</sup>
- show that  $\mathcal{A}(Q_p)$  varies linearly on discs of points that are the same mod  $p^{m-1}...$
- ...unless p | m, when variation can be quadratic

Let  $\mathcal{A} \in \operatorname{Br} X$ .

#### Question (Swinnerton-Dyer, 2010)

Suppose that Pic  $\overline{X}$  is torsion-free. Let p be a prime of good reduction for X (i.e.  $X \mod p$  is smooth). Is  $\mathcal{A}(Q_p)$  constant as  $Q_p$  varies in  $X(\mathbb{Q}_p)$ ?

Let  $\mathcal{A} \in \operatorname{Br} X$ .

#### Question (Swinnerton-Dyer, 2010)

Suppose that  $\operatorname{Pic} \overline{X}$  is torsion-free. Let p be a prime of good reduction for X (i.e.  $X \mod p$  is smooth). Is  $\mathcal{A}(Q_p)$  constant as  $Q_p$  varies in  $X(\mathbb{Q}_p)$ ?

Equivalently, let  $S = \{ \text{primes of bad reduction} \} \cup \{ \infty \}$ . Does

$$X(\mathbb{A}_{\mathbb{Q}})^{\mathsf{Br}} = Z \times \prod_{p \notin S} X(\mathbb{Q}_p),$$

where  $Z \subset \prod_{p \in S} X(\mathbb{Q}_p)$ ?

Let  $\mathcal{A} \in \operatorname{Br} X$ .

#### Question (Swinnerton-Dyer, 2010)

Suppose that Pic  $\overline{X}$  is torsion-free. Let p be a prime of good reduction for X (i.e.  $X \mod p$  is smooth). Is  $\mathcal{A}(Q_p)$  constant as  $Q_p$  varies in  $X(\mathbb{Q}_p)$ ?

Equivalently, let  $S = \{ \text{primes of bad reduction} \} \cup \{ \infty \}$ . Does

$$X(\mathbb{A}_{\mathbb{Q}})^{\mathsf{Br}} = Z \times \prod_{p \notin S} X(\mathbb{Q}_p),$$

where  $Z \subset \prod_{p \in S} X(\mathbb{Q}_p)$ ?

Does the Brauer–Manin obstruction involve only primes of bad reduction and infinite primes?

Rachel Newton

Theorem (Bright–N., 2020)

If  $\mathrm{H}^{0}(X, \Omega_{X}^{2}) \neq 0$  then every prime of good ordinary reduction is involved in a Brauer–Manin obstruction over some extension of the base field.

#### Theorem (Bright–N., 2020)

If  $\mathrm{H}^{0}(X, \Omega_{X}^{2}) \neq 0$  then every prime of good ordinary reduction is involved in a Brauer–Manin obstruction over some extension of the base field.

## Theorem (Margherita Pagano, 2021) Let $X : x^{3}y + y^{3}z + z^{3}w + w^{3}x + xyzw = 0$ and let $\mathcal{A} = \left(\frac{z^{3}+w^{2}x+xyz}{x^{3}}, \frac{-z}{x}\right) \in \operatorname{Br} X$ . Then 2 is a prime of good reduction for X and $\mathcal{A}(Q_{2})$ is not constant as $Q_{2}$ varies in $X(\mathbb{Q}_{2})$ .

- 2021 present Reader in Number Theory at KCL
- 2016 2021 Lecturer then Assoc. Prof. at Reading
- 2012 2015 Postdoc at Leiden, MPIM Bonn, IHÉS
- 2008 2012 PhD Cambridge
- 2007 2008 Part III Cambridge
- 2004 2007 BSc Warwick

#### Some things I learnt during my career

- Research is the primary criterion (for academic teaching and research jobs)
- · Be strategic re teaching experience
  - Check out the Nesin Maths Village!
- Give good, comprehensible talks and lots of them. Ask for honest feedback.
  - Any talk in Germany is potentially a job talk (this may also apply elsewhere)
- Talk to big shots at conferences



#### Some more things I learnt during my career

- The sniper versus the scattergun approach to job applications
  - · Write to people you want to work with, even if nothing is advertised
  - Don't waste time on pointless applications
- Play the long game
  - Prestige can be a means to an end
- Money matters
  - When interviewing for permanent/tenure track jobs, find out about the funding landscape in that country so you can talk about the grants you intend to apply for if you get the job