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Diophantine equations

Mathematicians working on Diophantine equations study the integer
solutions to polynomial equations with integer coefficients.

E.g. the Pythagorean equation
a2 + b2 = c2 has the integer
solution a = 3, b = 4, c = 5.
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45

32 + 42 = 52

Rachel Newton



Plimpton 322 (c. 1800 BC)

1192 + 1202 = 1692

33672 + 34562 = 48252

46012 + 48002 = 66492

127092 + 135002 = 185412
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Rational points on algebraic varieties

Let f (x1, . . . , xn) ∈ Q[x1, . . . , xn].

Let X/Q be the variety defined by f (x1, . . . , xn) = 0.

The set of rational points on X is

X (Q) = {(x1, . . . , xn) ∈ Qn | f (x1, . . . , xn) = 0}.

E.g. (0, 1) is a rational point on the unit circle x2 + y2 − 1 = 0.
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Searching for rational points
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Using R to prove that no rational points exist

Let X/Q be an algebraic variety.

X (Q) ⊂ X (R)

so
X (R) = ∅ =⇒ X (Q) = ∅.

X (R) is easier to deal with than X (Q) because R is complete.
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The real world is not enough

But
X (R) 6= ∅ 6=⇒ X (Q) 6= ∅.

E.g. x2 = 2 has real solutions but no rational solutions.

R is not the only completion of Q.

R =
{Cauchy sequences in Q with respect to | · |}

{sequences in Q converging to 0 with respect to | · |}
i.e. R is the completion of Q with respect to | · |.
E.g. π can be represented by the Cauchy sequence

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, . . .

or by

3 + 1, 3.1 + 1/2, 3.14 + 1/3, 3.141 + 1/4, 3.1415 + 1/5, 3.14159 + 1/6, . . .
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Entering the p-adic world

Let p be a prime. Define the p-adic absolute value | · |p on Q by∣∣∣pr a
b

∣∣∣
p

= p−r

where r , a, b ∈ Z and p - a, b. We also set |0|p = 0.

E.g. 5, 52, 53, 54, · · · → 0 with respect to | · |5.

1, 11, 111, 1111, 11111, · · · → −1/9 with respect to | · |5.
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The p-adic numbers

Qp =
{Cauchy sequences in Q with respect to | · |p}

{sequences in Q converging to 0 with respect to | · |p}

i.e. Qp is the completion of Q with respect to | · |p.

Concretely, elements of Qp look like

∞∑
n=N

anp
n, an ∈ {0, 1, . . . , p − 1}, N ∈ Z.
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The Hasse principle

X (Q) ⊂ X (R)×
∏
p

X (Qp) = X (AQ)

Q 7→ (Q,Q,Q,Q,Q, . . . ).

X (Q) 6= ∅ =⇒ X (AQ) 6= ∅

Definition

If “⇐= ” holds, we say the Hasse principle holds.
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The Hasse–Minkowski Theorem

Theorem (Hasse–Minkowski)

The Hasse principle holds for quadratic forms. I.e. a quadratic form over Q
has a non-trivial zero over Q iff it has non-trivial zeros over R and over Qp

for all primes p.
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A counterexample to the Hasse principle

Example (Lind, Reichardt)

The curve
C : 2y2 = x4 − 17z4

has points over R and over Qp for all p but no points over Q.

How do we prove that C (Q) = ∅?

We need a tool that combines information at different primes.
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Hilbert symbols

Let a, b ∈ Qp \ {0}. Define the Hilbert symbol (a, b)p as follows:

(a, b)p =

{
1/2 if as2 + bt2 = u2 has no nontrivial solution over Qp;

0 otherwise.

Similarly, for a, b ∈ R \ {0}, write

(a, b)∞ =

{
1/2 if as2 + bt2 = u2 has no nontrivial solution over R;

0 otherwise.
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Hilbert symbols

Theorem (equivalent to quadratic reciprocity)

Let a, b ∈ Q \ {0}. Then ∑
p≤∞

(a, b)p ∈ Z.

Rachel Newton



Returning to Lind and Reichardt’s counterexample

Recall the curve
C : 2y2 = x4 − 17z4.

The symbol (y , 17) can be evaluated at a Qp-point or an R-point of C to
give a Hilbert symbol.

E.g. let Q = (
√

2,
√

2, 0) ∈ C (R). Then

(y , 17)(Q) = (yQ , 17)∞ = (
√

2, 17)∞.

Note that √
2s2 + 17t2 = u2

has the solution (0, 1,
√

17) over R. Therefore, (
√

2, 17)∞ = 0.
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Returning to Lind and Reichardt’s counterexample

One can show that for any Q ∈ C (Q), we have

(yQ , 17)∞ = 0 and (yQ , 17)p = 0 for all p 6= 17.

E.g.
√

17 ∈ Q13 so
yQs

2 + 17t2 = u2

has the solution (0, 1,
√

17) over Q13. Hence, (yQ , 17)13 = 0.

On the other hand, we will show that (yQ , 17)17 = 1/2. This gives∑
p≤∞

(yQ , 17)p = 1/2 /∈ Z,

contradicting the reciprocity theorem. This implies that C (Q) = ∅.
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Proving that (yQ , 17)17 = 1/2

Let Q = (xQ , yQ , zQ) ∈ C (Q). So

2y2Q = x4Q − 17z4Q . (1)

Rescaling, we can assume that xQ , yQ , zQ ∈ Z.

Suppose for contradiction that

yQs
2 + 17t2 = u2

has a nontrivial solution over Q17. Then yQ ≡ (u/s)2 (mod 17).
Plugging this into (1) modulo 17 gives

2(u/s)4 ≡ x4Q (mod 17).

Hence 2 is a 4th power modulo 17. This is a contradiction because the
only 4th powers modulo 17 are 0,±1,±4. So (yQ , 17)17 = 1/2.
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The Brauer group

The symbol (y , 17) is an element in the Brauer group of C , written BrC .
The 2-torsion part of the Brauer group is made up of elements like this.

Let X be a nice variety and let A ∈ BrX . For all p ≤ ∞, we have
evaluation maps

X (Qp)× BrX → Q/Z
(Qp,A) 7→ A(Qp).

Recalling that X (AQ) =
∏

p≤∞ X (Qp), we obtain a pairing

X (AQ)× BrX → Q/Z

((Qp)p≤∞,A) 7→
∑
p≤∞
A(Qp).

Rachel Newton



The Brauer group

The symbol (y , 17) is an element in the Brauer group of C , written BrC .
The 2-torsion part of the Brauer group is made up of elements like this.

Let X be a nice variety and let A ∈ BrX . For all p ≤ ∞, we have
evaluation maps

X (Qp)× BrX → Q/Z
(Qp,A) 7→ A(Qp).

Recalling that X (AQ) =
∏

p≤∞ X (Qp), we obtain a pairing

X (AQ)× BrX → Q/Z

((Qp)p≤∞,A) 7→
∑
p≤∞
A(Qp).

Rachel Newton



The Brauer group

The symbol (y , 17) is an element in the Brauer group of C , written BrC .
The 2-torsion part of the Brauer group is made up of elements like this.

Let X be a nice variety and let A ∈ BrX . For all p ≤ ∞, we have
evaluation maps

X (Qp)× BrX → Q/Z
(Qp,A) 7→ A(Qp).

Recalling that X (AQ) =
∏

p≤∞ X (Qp), we obtain a pairing

X (AQ)× BrX → Q/Z

((Qp)p≤∞,A) 7→
∑
p≤∞
A(Qp).

Rachel Newton



Brauer–Manin obstructions

Key observation (Manin, 1970):

X (Q) ⊂
{

(Qp)p≤∞ ∈ X (AQ) | ∀A ∈ BrX ,
∑
p≤∞
A(Qp) = 0 ∈ Q/Z

}
.

The set on the right-hand side is the Brauer–Manin set, denoted X (AQ)Br.

Suppose X (AQ) 6= ∅ but X (AQ)Br = ∅. Then X (Q) = ∅.
Brauer–Manin obstruction to the Hasse principle
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Computing the Brauer–Manin set

To compute X (AQ)Br, for each A ∈ BrX we need to understand how
A(Qp) varies as Qp varies in X (Qp).

For example, if A has order n then A(Qp) ∈ 1
nZ/Z ⊂ Q/Z.

If for some p all values in 1
nZ/Z are attained then X (AQ)A 6= ∅,

i.e. A does not obstruct the Hasse principle.
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Computing the Brauer–Manin set

Let Qp ∈ X (Qp).

If A has order coprime to p then A(Qp) only depends on Qp mod p.

If A has order p then A(Qp) could depend on Qp mod p2 or modp3

etc.
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Wild evaluation maps

Bright–N., 2020

For A ∈ BrX of order p, we:

calculate m such that A(Qp)
only depends on Qp mod pm

show that A(Qp) varies linearly
on discs of points that are the
same mod pm−1...

...unless p | m, when variation
can be quadratic

Rachel Newton



Which primes can be involved in the Brauer–Manin
obstruction?

Let A ∈ BrX .

Question (Swinnerton-Dyer, 2010)

Suppose that Pic X̄ is torsion-free. Let p be a prime of good reduction for
X (i.e. X mod p is smooth). Is A(Qp) constant as Qp varies in X (Qp)?

Equivalently, let S = {primes of bad reduction} ∪ {∞}. Does

X (AQ)Br = Z ×
∏
p/∈S

X (Qp),

where Z ⊂
∏

p∈S X (Qp)?

Does the Brauer–Manin obstruction involve only primes of bad
reduction and infinite primes?

Rachel Newton



Which primes can be involved in the Brauer–Manin
obstruction?

Let A ∈ BrX .

Question (Swinnerton-Dyer, 2010)

Suppose that Pic X̄ is torsion-free. Let p be a prime of good reduction for
X (i.e. X mod p is smooth). Is A(Qp) constant as Qp varies in X (Qp)?

Equivalently, let S = {primes of bad reduction} ∪ {∞}. Does

X (AQ)Br = Z ×
∏
p/∈S

X (Qp),

where Z ⊂
∏

p∈S X (Qp)?

Does the Brauer–Manin obstruction involve only primes of bad
reduction and infinite primes?

Rachel Newton



Which primes can be involved in the Brauer–Manin
obstruction?

Let A ∈ BrX .

Question (Swinnerton-Dyer, 2010)

Suppose that Pic X̄ is torsion-free. Let p be a prime of good reduction for
X (i.e. X mod p is smooth). Is A(Qp) constant as Qp varies in X (Qp)?

Equivalently, let S = {primes of bad reduction} ∪ {∞}. Does

X (AQ)Br = Z ×
∏
p/∈S

X (Qp),

where Z ⊂
∏

p∈S X (Qp)?

Does the Brauer–Manin obstruction involve only primes of bad
reduction and infinite primes?

Rachel Newton



Which primes can be involved in the Brauer–Manin
obstruction?

Theorem (Bright–N., 2020)

If H0(X ,Ω2
X ) 6= 0 then every prime of good ordinary reduction is involved

in a Brauer–Manin obstruction over some extension of the base field.

Theorem (Margherita Pagano, 2021)

Let
X : x3y + y3z + z3w + w3x + xyzw = 0

and let A =
(
z3+w2x+xyz

x3
, −zx

)
∈ BrX. Then 2 is a prime of good

reduction for X and A(Q2) is not constant as Q2 varies in X (Q2).
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Career overview

2021 – present Reader in Number Theory at KCL

2016 – 2021 Lecturer then Assoc. Prof. at Reading

2012 – 2015 Postdoc at Leiden, MPIM Bonn, IHÉS

2008 – 2012 PhD Cambridge

2007 – 2008 Part III Cambridge

2004 – 2007 BSc Warwick
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Some things I learnt during my career

• Research is the primary criterion 
(for academic teaching and research jobs)

• Be strategic re teaching experience
• Check out the Nesin MathsVillage!

• Give good, comprehensible talks and lots of 
them.  Ask for honest feedback.
• Any talk in Germany is potentially a job talk 

(this may also apply elsewhere)

• Talk to big shots at conferences



Some more things I learnt during my career

• The sniper versus the scattergun approach to job applications

• Write to people you want to work with, even if nothing is advertised

• Don’t waste time on pointless applications

• Play the long game

• Prestige can be a means to an end

• Money matters

• When interviewing for permanent/tenure track jobs, find out about the funding landscape in 
that country so you can talk about the grants you intend to apply for if you get the job


